Boyut İndirgeme (Dimensionality Reduction) – 4

Kernel PCA Destek vektör makinelerinde, nonlineer sınıflandırma yapmamızı sağlayan çekirdek hilesini görmüştük. Çekirdek hilesi benzer şekilde PCA algoritması ile de kullanılabilir ve PCA ile karmaşık nonlineer izdüşümler yapabiliriz. Çekirdek ve parametrelerin belirlenmesi için iki yol izleyebiliriz:  Boyut indirgeme, çoğunlukla bir gözetimli öğrenme görevinin hazırlık aşamalarındandır. O halde, parametreleri, sınıflandırma veya regresyon hatasını minimum yapacak şekilde seçebiliriz. … Okumaya devam et Boyut İndirgeme (Dimensionality Reduction) – 4

Reklamlar

Boyut İndirgeme (Dimensionality Reduction) – 3

Explained Variance Ratio Her bir temel bileşen için, 'Explained Variance Ratio' bilgisine, kodu ile ulaşabiliriz. 'Explained Variance Ratio', kabaca, her bir temel bileşen üzerinde, verisetinin varyansının ne kadarının yer aldığını açıklar. d sayısının seçimi İndirgeyeceğimiz boyutu (d) keyfi olarak belirlemek yerine, verisetinin varyansının büyük ksımını koruyacak şekilde seçmeliyiz. Ancak, boyut indirgemeyi veri görselleştirme için yapıyorsak, … Okumaya devam et Boyut İndirgeme (Dimensionality Reduction) – 3

Boyut İndirgeme (Dimensionality Reduction) – 2

Temel Bileşen Analizi (Principal Component Analysis - PCA) Verisetini düşük boyutlu bir hiperdüzleme indirgemeden önce, doğru hiperdüzlemi seçmemiz gerekiyor. Örneğin, yukarıdaki grafikte, verisetindeki noktaların üç farklı eksen üzerine izdüşümleri alınmıştır. Sağda, en üstteki izdüşümde maksimum varyans, en alttakinde ise minimum varyans vardır. Boyut indirgemede amacımız, maksimum varyans elde edilecek hiperdüzlemi belirlemektir. PCA algoritmasının ana fikri … Okumaya devam et Boyut İndirgeme (Dimensionality Reduction) – 2